If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16a^2+120a+144=0
a = 16; b = 120; c = +144;
Δ = b2-4ac
Δ = 1202-4·16·144
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-72}{2*16}=\frac{-192}{32} =-6 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+72}{2*16}=\frac{-48}{32} =-1+1/2 $
| 3/5c-1/5=1/10 | | k/13+4-5k=-2k | | 3/2(x)-2.2=2(0.7x-1) | | -4m+6=16 | | x-25=1x/6 | | 2^x+2-2^x=48 | | 3x÷5=3÷4 | | 45b3-75b2+20b=0 | | X-28=2/5x+1/4(x-2/5x) | | 6x+12=3x-61 | | 0.66=2/x | | 3/x+3+4/x-5=32/(x+3)(x-5) | | x=x+76 | | 2(x–3)+9=3(x+1) | | 4y=16×+12 | | 7X+3-2X=4X+2x5+1 | | X/5=2x/(x+3) | | x4/5x+5=3 | | x=676/36 | | x=72*4 | | x=36*6 | | 8x-3.8=-8-7.0 | | x+(3(x-6))+(x-6)=101 | | 3x-9^2=2x+2(2x+2+27) | | 2x+13=1/2(13x-37) | | -4n=26 | | 6+n=-21 | | 23=29−y | | 10-10=6x+50 | | 36=24-2y. | | b3− 4=4 | | 17r−15r=14 |